Forecasting Stock Market Using Wavelet Transforms and Neural Networks and ARIMA (Case study of price index of Tehran Stock Exchange)

Authors

  • M. A. Aghaei
  • M. Moradzadeh fard
  • N. Mousazadeh Abbasi
Abstract:

The goal of this research is to predict total stock market index of Tehran Stock Exchange, using the compound method of ARIMA and neural network in order for the active participations of finance market as well as macro decision makers to be able to predict trend of the market. First, the series of price index was decomposed by wavelet transform, then the smooth's series  predicted by using the ARIMA and low-frequency parts of the signal  was predicted by using neural network method then this predicted was compound with inverse wavelet transform. The main attention of this paper is investors and traders to achieve a method for predict stock market. Concerning the results of previous researches which confirm the relative superiority of non-linear models in price index prediction, an appropriate model has been offered in this research by compounding the non-linear method and linear method such as neural network and ARIMA with using wavelet transform, The results indicate superiority of the designed system in predicting price index of Tehran Stock Exchange.  This paper by compounding the linear and non-linear method issues pattern to predict stock market, to encourage further investigation by academics and practitioners in the field.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

forecasting stock market using wavelet transforms and neural networks and arima (case study of price index of tehran stock exchange)

the goal of this research is to predict total stock market index of tehran stock exchange, using the compound method of arima and neural network in order for the active participations of finance market as well as macro decision makers to be able to predict trend of the market. first, the series of price index was decomposed by wavelet transform, then the smooth's series  predicted by using...

full text

Forecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)

The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...

full text

forecasting stock market using wavelet transforms and neural networks: an integrated system based on fuzzy genetic algorithm (case study of price index of tehran stock exchange)

the jamor purpose of the present research is to predict the total stock market index of tehran stock exchange, using a combined method of wavelet transforms, fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.to do so, first the prediction was made by neural network, then a series of price index was decomposed by w...

full text

conditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market

ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...

Effect of Oil Price Volatility and Petroleum Bloomberg Index on Stock Market Returns of Tehran Stock Exchange Using EGARCH Model

The present research aims to evaluate impacts of crude oil price return index, Bloomberg Petroleum Index and Bloomberg energy index on stock market returns of 121 companies listed in Tehran stock exchange in a 10 years' period from early 2006 to April 2016. First, explanatory variables were aligned with petroleum products index mostly due to application of dollar data. Subsequently, to check va...

full text

Forecasting Stock Price using Hybrid Model based on Wavelet Transform in Tehran and New York Stock Market

Forecasting financial markets is an important issue in finance area and research studies. On one hand, the importance of prediction, and on the other hand, its complexity, have led to huge number of researches which have proposed many forecasting methods in this area. In this study, we propose a hybrid model including Wavelet Transform, ARMA-GARCH and Artificial Neural Network (ANN) for single-...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue None

pages  31- 40

publication date 2015-08

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023